
1

The Anaconda Fedora and
RHEL installer

Martin Kolman
Red Hat

http://www.modrana.org/pyconpl2013
martin.kolman@gmail.com

@M4rtinK

mailto:martin.kolman@gmail.com

2

What is Anaconda ?

● a large non-venomous snake found in tropical
South America

● a movie
● a small town in Montana, USA
● the default installer for Fedora, Red Hat

Enterprise Linux (RHEL) distributions and
their derivatives

3

Anacondas job

● it installs a Linux distribution to a computer
– might or might not have an OS already installed

● has to detect hardware and configure it as
needed

● prepares storage
● installs and configures software
● reboots the computer

4

Computer

● might be a X86 PC
● a server (or a few thousand of them)
● some ARM board (Raspberry Pi, Beaglebone, ...)
● a PowerPC computer
● a IBM S390 mainframe

Anaconda needs to be able to run on all of those.

5

Storage

● there are lots of storage devices and filesystems
● basic HDDs with normal filesystems, basic RAID
● advanced (enterprise) storage devices:

– iSCSI & multipath devices

– fibrechannel

– enterprise grade RAID setups

Anaconda needs to be able to detect, partition,
format and mount them.

6

Installing and configuring

● a community developed Linux distribution such
as Fedora is a constantly changing landscape
– hostname might just drop an option once in a while

– GTK might just starts calling exit if X is not yet
running instead of raising an exception

– /tmp gets moved on a ramdisk

Anaconda needs to keep up with all these
changes to install the system correctly.

7

Two and half installations

Anaconda has 2.5 ways of installing the OS

1. interactive installation
– configured through the UI by the user

2. automated install
– running without user interaction

– configured by a kickstart recipe

2.5. hybrid installation
– some values are set from kickstart, the rest from UI

8

GUI

9

TUI

● write only
– would even work on a teletype (AKA the S390

terminal)

10

History

● first commit in VCS dates back to 1999

● that's just for the GUI support, the installer itself
is probably even older

● continuously developed and used ever since

commit 785d44bf73ccc1d57d771895cc94112a34857809
Author: Matt Wilson <msw@redhat.com>
Date: Sat Apr 24 03:57:59 1999 +0000

 the very start of a gui frontend for anaconda

-# This toplevel file is a little messy at the moment...
+# This toplevel file is a little messy at the moment... (2001-06-22)
+# ...still messy (2013-07-12)

11

Some stats

● currently 34k combined lines of code
– down from the record high of 88k

● 36 contributors with at least 40 commits
● 7 developers with >1000 commits
● there are ~26000 commits in the Git repository

taking up about 85 MB
– CVS was used at the beginning and later imported

to Git

12

Architecture

● Anaconda is written in Python 2.7
● is using GTK 3 through the GObject

introspection interface
● the GUI layout is specified using XML files

generated by the Glade Interface Designer
● custom GTK widgets (such as the timezone

map) are written in C and used through GI
● the TUI is using a custom write-only toolkit

13

Fun with threads

● Anaconda is a multithreaded application
– it needs to do a lot of stuff at once and still react to

user input

● so it needs to be threadsafe
● turns out, most libraries it is using are not ! :)

– GTK is not threadsafe !

– most DBUS bindings are not threadsafe !

– even the YUM package manager is not threadsafe !

14

Untangling the mess

● only one specific thread needs to use the
resources at the same time
– hello GTK !

– solution: message queues feeding the main thread

– can be turned into a decorator, that forwards the
function to be called by the main thread and then
optionally returns the result back

@gtk_action_nowait
def _restart_spinner(self):
 spinner = self.builder.get_object("progressSpinner")
 spinner.show()
 spinner.start()

15

ThreadManager

● all Threads are started and tracked by a thread
management module

● logs thread lifecycle
● provides easy checking if threads are running

and waiting for threads to finish
● also handles exceptions getting caught by a

random thread in Python

16

Debugging

● it is quite important that Anaconda works
● if an application breaks, the user is not able to

use the application
● if Anaconda breaks, the users is not able to use

their computer/server farm/mainframe

17

Logs

● Anaconda logs quite a lot of stuff to /tmp/*
– if installation succeeds, logs are copied to the

installed system

● during the whole installation, there is a bash
shell running on tty2, that can be used to check
the log and generally probe the system

18

Interactive debugging

● Anaconda also has interactive debugging

19

Interactive debugging

● shows the traceback, stackframe and object
dump in a scrollable window

● can submit debug data directly to Red Hat
bugzilla or scp it to a server of your liking

● clicking the debug button switches you to tty1
and starts pdb

20

Development

● Anaconda is an open source project licensed
under the GPLv2

● patches are submitted to the anaconda-patches
mailing list

● they need to be ACKed by one of the core
developers

● once ACKed, they are pushed to the Anaconda
git repository and included in the next build

21

Development

● every distro release gets a Git branch,
eventually

● fixes are backported back to supported
branches

● RHEL5 (released 2007) and RHEL6 (released
2010) are still getting fixes

● RHEL7 branch is being stabilized

22

The children of Anaconda

All through the long history of the Anaconda
project, one pattern always manifested itself.

New module would be added, grow with
improvements and new features and then
separate to live as independent libraries.

Not longer a part of Anaconda itself, they are still
used as external dependencies, providing
cleaner interface and allowing an independent
release schedule and usage by other projects.

23

Pykickstart

● handles kickstart parsing and validation
● individual kickstart commands are defined as Python classes named after

the Fedora release they were introduced
– changed commands inherit the latest command class and change it's behavior

– example:

class FC20_Firewall(FC13_Firewall)

● only parsing, no command execution
● can also generate kickstart files from a list of properly configured command

object instances
– this is used by Anaconda to record all changes (even manual ones) done during

installations into a comprehensive kickstart file, which is saved to the installed system

● has a comprehensive testsuite

24

blivet

“A blivet, also known as a poiuyt, devil's fork or widget, is an
undecipherable figure, an optical illusion and an impossible
object.”

● the aptly named blivet is a python storage library born from
Anaconda storage handling code rewrite

● can handle a wide range of filesystems and storage devices
– EXT2-4, XFS, BTRFS, HFS, NFS, NTFS, TMPFS, RAID, LVM, ...

● and do many operations on them
– detection, creation, formatting, resizing, wiping, relabeling, fstab

parsing and generation, ...

25

blivet

● is used as the Anaconda storage backend
● also used by the OpenLMI system management project for

handling storage
● really really likes **kwargs
● has a comprehensive testsuite !

– that needs needs to run as root

– and does various partitioning operations on the current system :)

(well, there is not really any other way of testing that all the
operations blivet does are performed correctly without doing
them on a real system and checking the result)

26

python-meh

● an exception handling module for Python
● once an exception happens, python-meh

recursively dumps the complete object tree to a
text file

● it also includes the traceback and variables
from the current frame

27

pyparted

● provides python bindings the the parted
partitioning utility

28

langtable

● while not direct Anaconda offspring, the langtable
project was triggered due to need for advanced
l10n handling in Anaconda

● maintains weighted tables of l10n data mappings
– territory code<->languages, country<->keyboard layout<-

>language, translated language names, ...

● the table is a gziped XML parsed by expat
● there is a proposal to rewrite it to Vala and provide

Python bindings through GObject introspection

29

Future plans

● using Python 3
– Tentatively planed for Fedora 22

– Depends on Python support in Python libs used

● using Wayland for the Anaconda minidistro
● improve documentation
● tests, test and more tests

30

Thanks!

● Questions ?

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30

